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Shock waves in an elastic medium with cubic anisotropy�
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Abstract

Low-intensity shock waves, propagating along the principal diagonal of a cube in an incompressible elastic medium possessing
cubic symmetry, are considered. The form of the shock adiabatic in the phase plane of shears is obtained. Sections corresponding to
non-decreasing entropy at the discontinuity and the conditions of evolutionarity of the discontinuity on it are indicated. The structure
of the shock waves is investigated.
© 2006 Elsevier Ltd. All rights reserved.

Plane one-dimensional waves in a slightly non-linear elastic medium are considered. We are particularly interested
in the effect on this process of the anisotropy of the medium in the plane of the wave front (wave anisotropy) and its
interaction with the effects of non-linearity.

A non-linear elastic medium, in the region where the strains are not too large, will be specified by an elastic potential
(the internal energy per unit volume) in the form of an expansion in series in the strains, confining ourselves to the first
principal terms, which determine the non-linearity. In the general case, wave anisotropy already occurs in the quadratic
terms of the expansion, and isotropic non-linearity in the fourth-order terms. In order for the effect of anisotropy and
non-linearity to have the same value in the wave propagation, it was assumed in Refs. 1–3 that the coefficient of the
anisotropic term in the expansion of the elastic potential in the strain components were small. The expansion itself was
taken up to the fourth degree.

The purpose of the present paper is to consider non-linear waves in such a medium when there are no terms that
are quadratic in the strain, representing the anisotropy, in the expansion of the elastic potential, and the principal terms
of anisotropic form are cubic. At the same time they also express the non-linearity of the medium. An elastic medium
with trigonal symmetry, possessing invariance of the properties of relative rotation by an angle of 120◦ about a certain
axis, possesses such a property. An example of such a situation is the propagation of transverse waves in an elastic
medium, possessing cubic-crystal symmetry, when the direction of the wave propagation coincides with the principal
diagonal of the cube.

1. Formulation of the problem

The elastic potential of a medium. Consider plane non-linear waves, propagating in a uniform unbounded incom-
pressible elastic medium, possessing cubic symmetry, along the principal diagonal of the cube. There are assumed to
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be no prestrains in the medium. The problem is considered in Lagrangian variables in a Cartesian system of coordinates
of the initial state. The direction of the wave propagation is taken to be along the x3 = x axis, and the x1 and x2 axes
lie in the plane of the wavefront. The strain is represented by components ∂wi/∂xj (i, j = 1, 2, 3) of the gradient of
the displacement vector w, of which, in plane waves propagating along the x axis, the variables are ∂wi/∂x = ui(x, t)
and the remaining ones are ∂wi/∂x� = const = 0, � = 1, 2. A consequence of the assumption that the medium is
incompressible in one-dimensional waves is that there is no change in the longitudinal component of the deformation,
i.e. u3 = const and we can assume u3 = 0.

For a medium with cubic symmetry, the representation of the elastic potential by an expansion in series in the strain
components �ij up to the third powers can be found, for example, in Ref. 4. When using the components of the gradients
of the displacement ui instead of �ij for waves propagating along the principal diagonal of the cube, the elastic potential
of an incompressible medium must be taken in the form5

(1.1)

Note that the assumption of incompressibility is taken here solely to simplify the description. It was shown in Ref.
5 that for a medium of this type, the change in u3 can be expressed in terms of the change in u1 and u2. This applies
similarly for [u3]. As a result, the elastic potential can be represented as a function of solely two components, u1 and
u2, and can be treated as the elastic energy of a certain equivalent incompressible medium.

Here f and g are the elasticity constants of the medium. It is obvious that, for very small strains (the linear approxi-
mation), the coefficient f is identical with the shear modulus. The coefficient g serves as the parameter of anisotropy and
simultaneous of non-linearity. It has the same order of magnitude as f, and, by an appropriate choice of the numbering
of the axes ui, the coefficient g can be made positive. T0 is the temperature in the initial state and S is the entropy per
unit mass. The terms with the change in entropy S − S0 must be taken into account when investigating shock waves in
order to determine the direction of variation of quantities. Here, in expansion (1.1), it is sufficient to confine ourselves
to the first powers of the change in entropy S − S0, since it is well known from the general theory of shock waves that
at a discontinuity the change in the entropy is no less than two orders of magnitude less than the change in strains. A
confirmation of the correctness of this assumption is obtained below by direct calculation of S − S0, which turns out to
be of the third order of smallness in ui, and hence the entropy-strain cross term is an order of magnitude smaller than
those taken into account in the formulation of the problem and is not present in the expansion.

Without loss of generality we can further take �0 = 1. This assumption is equivalent to using the function �/�0
everywhere henceforth instead of the elastic potential (1.1).

As can be seen from formula (1.1), the function �(ui, S), which specifies the elastic potential, retains its form when
the coordinate axes in the (u1u2) plane change, namely, when u2 is replaced by −u2 (the mirror image in the u1 axis)
and when the axes are rotated as a whole by an angle of 2�/3. The presence of such symmetry turns out to be useful
when investigating shock waves.

2. Conditions on the discontinuity

The shock adiabatic. Continuous one-dimensional motions of an incompressible elastic medium in Lagrangian
variables are described by the following system of hyperbolic equations1

(2.1)

where v� = ∂w�/∂t are the components of the velocity and u� = ∂w�/∂x are the components of the shear strains. On
the discontinuity, the conditions expressing the conservation laws

(2.2)

correspond to these equations.
The square brackets denote values of the jumps in the corresponding quantities: [a] = a+ − a−, where a+ and a− are

the values of the parameter a behind the discontinuity and in front of it respectively and W is the Lagrange velocity of
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the discontinuity front. The energy equation on the discontinuity

(2.3)

serves to calculate the change in entropy S − S− in the shock wave. For values of the parameters of state in front of
the discontinuity we will henceforth use the notation u−

1 = U1, u
−
2 = U2, S

− = S0, while the parameters behind the
discontinuity will not be given the superscript plus.

In a medium with the elastic potential (1.1) the conditions on the discontinuity (2.2) will be taken in the form

(2.4)

Eliminating W from this system, we find the relation between the specified fixed state (u1 = U1 and u2 = U2) in front
of the discontinuity and the possible states behind it which satisfy the conservation laws. The set obtained in this way
is the shock adiabatic and is defined by the equation

(2.5)

Eq. (2.5) contains no other constants of the medium and depends solely on the initial state U1, U2 of the shear strains
in front of the discontinuity.

For specified U1 and U2, points of three branches of the curve, shown in Fig. 1, passing through the point A with
coordinates u1 = U1, u2 = U2, representing the initial state, and two points symmetrical about the u1 axis (the point A′
(U1, −U2)) and symmetrical about the origin of coordinates (the point A1 (−U1, −U2)), satisfy the shock adiabatic
Eq. (2.5) in the phase plane (u1u2). As a consequence of the symmetry of the function �(ui) with respect to rotation
of the axes of coordinates by an angle 2�/3 and mirror reflection in the u1 axis, pointed out above in Section 1, it is
sufficient to consider only the situation when the point A(U1, U2) of the initial state is situated in the (u1, u2) plane in
the first quadrant inside the angle �/3. We will therefore assume 0 < U2 <

√
3U1 everywhere henceforth.

In a shock wave of infinitesimal intensity, a change in the parameters is identical with their change in Riemann
waves, i.e. sections of the shock adiabatic in the neighbourhood of the initial point coincide with the elements of the
integral curves of Riemann waves, which were obtained previously in Ref. 5 for system of Eq. (2.1), and the following
expressions were obtained for the characteristic velocities

(2.6)

corresponding to slow Riemann waves (c1) and fast Riemann waves (c2). The upper sign in formula (2.6) and below
corresponds to slow waves and the lower sign to fast waves. The integral curves of the two families of Riemann waves

Fig. 1.
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are defined by the equation

At the initial point A the two mutually orthogonal Riemann waves, tangential to the integral curve, define the direction
of the shock adiabatic, tangential to the two branches at the initial point

(2.7)

Hence, the shock adiabatic has a self-intersection at the initial point, which is also easy to see directly from its equation
(2.5).

Curve (2.5) has three asymptotes

The first of these lies above the u1 axis and is parallel to it, while the two others pass at an angle of ±�/3 to the left of
the initial point A. In Fig. 1 the asymptotes are represented by the dashed lines. The two points of intersection of curve
(2.5) with the u1 axis are situated in such a way that for one of them 0 < u1 < U1 while for the other u1 < −2U1.

Hence, the shock adiabatic H = 0 in the (u1u2) plane (Fig. 1) consists of three branches, departing to infinity along
the asymptotes, two of them, qAn and nAp, pass through the initial point A, intersecting at a right angle, while the
third, qA1p, passes through the point A1(−U1, −U2), symmetrical about the origin, and lies as a whole in the region
of negative u1.

3. The entropy degradation law at the discontinuity

In addition to the conservation laws, a consequence of which is Eq. (2.5), discontinuous solutions must satisfy the
entropy degradation law [S] = S − S0 ≥ 0. The change in entropy is calculated using Eq. (2.3) using a specific form of
(1.1) for the elastic potential �. We have

(3.1)

The jump in entropy [S] changes sign on the three straight lines passing through the initial point, each of which has
one point of intersection with one of the branches of the shock adiabatic. The straight lines on which [S] = 0 are shown
in Fig. 1 by the dot-dash lines, while the regions where [S] ≥ 0 are shown hatched. Only jumps represented by sections
of the shock adiabatic falling within the hatched regions can be realized.

4. The conditions for the evolutionarity of discontinuities

Simultaneously with the entropy degradation law, the shock waves must satisfy the conditions of evolutionarity
(the necessary conditions for the stability of the discontinuity with respect to one-dimensional perturbations). These
conditions consist of certain relations2 between the velocity of the discontinuity W and the characteristic velocities c�,
specified by formulae (2.6). Two groups of inequalities of evolutionarity define two types of shock waves

(4.1)

Here c−
� , c+

� are the characteristic velocities in front of the discontinuity and behind it, respectively, where � = 1, 2
and c1 < c2. To distinguish the evolution sections on the shock adiabatic, satisfying conditions (4.1), we must indicate
the position of the Jouguet points on it, i.e. the points at which the velocity of the discontinuity W is identical with one
of the characteristic velocities c−

� and c+
� . To do this we will obtain the velocity of the discontinuity W as a function of

the points on the curve (2.5).
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From the relations on the discontinuity (2.4) we obtain

(4.2)

Here we must substitute the relation between u1 and u2 from the shock-adiabatic Eq. (2.5). This operation is easier
to carry out in polar coordiates �, � with origin at the point A and by measuring the angle � from the direction that is
parallel to the axis. In this system

In polar coordinates the shock-adiabatic equation takes the form

(4.3)

After substituting expression (4.3) into formula (4.2) we obtain the value of the square of the velocity of the
discontinuity as a function of the parameter k = tg�, which varies monotonically along the shock adiabatic −∞ ≤ k ≤ ∞.
When seeking the Jouguet points (where W = c±

� ), instead of the quantity W2 we will use the auxiliary function

(4.4)

and, instead of the characteristic velocities (2.6), the corresponding expressions

The graph of the function h(k) (Fig. 2) has three vertical asymptotes passing through the points k = 0, k = ±√
3,

which correspond to three asymptotes of the shock adiabatic in the (u1u2) plane (Fig. 1). On each of the asymptotes
the function h, passing through ∞, changes sign. It also changes sign at the only point of intersection of the graph
with the k axis at the point k = U2/U1, which corresponds to point A1 on the shock adiabatic. We recall that, due to the
symmetry for the initial state, it is sufficient to consider points at which 0 < U2 <

√
3U1. Here the point A1 in Fig. 2

will be situated in the region 0 < k(A1) <
√

3 between the two right asymptotes.
When k → ±∞ the curve h(k) reaches the horizontal asymptote mm, on which h = U1 > 0. Consequently, h(k) > 0

in the regions |k| >
√

3. Along the asymptote h → +∞ when |k| → √
3 + � and h → −∞ when |k| → √

3 − � (�
is a small positive quantity). The change in the sign of h at the point A1 indicates that h → +∞ when k → 0 + � and
h → −∞ when k → 0 − �.

The branches of the function h(k) obtained in Fig. 2 correspond to the branches of the shock adiabatic in Fig. 1, and
their ends in these figures are given the same letters. The ends of the curve h(k), arriving at ∞ along the horizontal
asymptote mm correspond to the point m with vertical tangent on the branch qn of Fig. 1.

The graph h(k) intersects the horizontal asymptote h = U1 twice – at the point corresponding to 0 < k < U2/U1 (which
is of no interest) and in the region k >

√
3. This denotes that when k → −∞ the curve h(k) approaches the horizontal

asymptote from above, and when k → +∞ it approaches it from below, having, consequently, a minimum point H.

Fig. 2.
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Fig. 3.

Investigation shows that the function h(k) has one more extremum, which is in the region of negative k and gives a
maximum at the point E on the branch np.

Two points, which are the velocities of two infinitely weak jumps, identical with the slow and fast characteristic
velocities (2.6), correspond to the initial state A(U1, U2) on the graph h(k). In Fig. 2 these are the points of intersection

of the curve h(k) with the straight lines h = ∓
√

U2
1 + U2

2 , passing below the point E and above the point H respectively
– the extrema of the function h(k) (and simultaneously of the function W).

There are several such points, and we must indicate which of these Jouguet points W = c−
� correspond to the initial

state A. We immediately eliminate the intersection with the branch pq – this branch of the shock adiabatic does not
pass through the point A. We will further use the fact that, in the neighbourhood of the initial point, the elements of
the shock adiabatic are identical with parts of the integral curves of the Riemann waves. For the fast Riemann wave
(the lower sign in formula (2.7)) we must have k(A) >

√
3, while for the slow wave k(A) < 0. On the branch np there

are two points where W = c−
1 , and the point E of the maximum between them. The change in W in the shock wave,

beginning from the point A, must proceed in the direction which corresponds to breaking Riemann waves. According
to the results obtained previously in Ref. 5 for the slow waves this is the direction in which k decreases. This means that
the initial point must be on the right of the points considered, for which k > k(E). The remaining points of intersection
of the horizontals considered in Fig. 2 with the graph of h are the Jouguet points where W = c−

1,2.

It is well known,6 that the Jouguet points in the state behind the discontinuity (W = c+
1,2) coincide with the points

of the extremum of the function W(k) on the shock adiabatic, or, which is the same thing in the case considered, the
function h. The position of these points has already been obtained: the point E lies on the section An of the branch pAn,
and the point H lies on the section Amn of the branch qAn (Fig. 1).

To indicate the position of the evolution parts on the shock adiabatic, we will use the evoluationarity diagram (Fig. 3),
where, on mutually orthogonal axes W, we plot the values of the characteristic velocities before the discontinuity c−

1,2

and after the discontinuity c+
1,2. The values of the velocity W, which fall in the hatched quadrants of this diagram,

satisfy the evolutionarity conditions (4.1). In the lower quadrant, inequalities (4.1) are simultaneously satisfied in case
a, which corresponds to slow shock waves, while in the upper quadrant inequalities (4.1) are simultaneously satisfied
in case B, which corresponds to fast shock waves. At the intersection of the grid, the points (c−

1 , c+
1 ) and (c−

2 , c+
2 )

represent the initial state A.
In the diagram of Fig. 3 we show schematically a graph of the velocity W along the shock adiabatic in accordance

with Fig. 2. We can also consider this curve as the trace of the shock adiabatic on the diagram. The Jouguet points,
where W = c−

1,2, lie at the intersection with the vertical lines, and at the Jouguet points where W = c+
1,2 the curve

intersects the horizontal lines at a right angle, having extrema at these points. It can be seen from the diagram that
W = c+

1 at the point E and W = c+
1,2 at the point H. Hence, there is a single evolution section AE of slow shock waves

and three evolution parts Aq, Kn and Fp of fast shock waves on the shock adiabatic. In the diagram of Fig. 3 and on
the shock adiabatic the evolution sections are distinguished by heavy curves and are indicated by the same letters. It
turned out that all the evolution parts fell in a region where the entropy degradation law at the discontinuity (3.1) is
satisfied. Hence, the conditions of evolutionarity turned out to be stronger than the entropy degradation law.

It is easy to see how the result changes if the sign of the coefficient g in the expansion of the elastic potential changes
from positive to a negative. The curve representing the shock adiabatic in the (u1u2) plane in Fig. 1 remains as before,
since its Eq. (2.5) does not contain g. When g < 0, the regions where [S] ≥ 0 in the (u1u2) plane become those shown
hatched in Fig. 1. The formulae for the fast and slow characteristic velocities change their roles, and consequently,
the type of Jouguet points, but not their position on the shock adiabatic. As a result, the sections AH on the branch
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Amn for the slow shock waves and the three parts, Ap, Em and Lq, for the shock waves will be evolution parts and
simultaneously satisfy the requirement [S] ≥ 0.

5. The structure of the discontinuities

We note that the evolutionarity conditions (4.1) are based on the fact that the conditions on the discontinuity
consist solely of the conservation laws. Such evolutionarity is called a priori evolutionarity.2 However, there may be
other additional conditions on the discontinuity, which change the whole pattern of the situation of evolution parts
on the shock adiabatic. The possibility of the occurrence of such additional conditions can only be determined when
investigating the structure of the discontinuity. The appearance of discontinuous solutions is due to the hyperbolicity
of the system of equations of the theory of elasticity. To investigate the structure, this model is supplemented by
dissipative properties. In this paper we will take viscosity as the dissipation mechanism, and to describe the structure
we will take the Kelvin-Voigt model of a viscoelastic medium. In a narrow transition zone, replacing the discontinuity,
equations obtained from system (2.1) by adding viscous terms, represented by the second derivatives of the velocity7

apply

(5.1)

The coefficient of viscosity � is taken to be scalar and constant. The values of the functions v±
� , u±

� on different
sides of the discontinuity front are taken as the boundary conditions for this system when x → ±∞. When � → 0
system (5.1) changes into the system of equations of the theory of elasticity, while the continuous solution, if it exists,
is converted into a jump.

The solution of system (5.1) in the form of a travelling wave, in which the velocity is identical with the velocity of
the discontinuity W being investigated, is called the stationary structure of the discontinuity

When � → ±∞ this solution must reach constant values of the functions in front of and behind the discontinuity. In
the new variables, i.e. in a system of coordinates moving with velocity W, Eq. (5.1) becomes ordinary equations with
constant coefficients

Using the second group of equations we can eliminate v� from the system, and we can integrate once with respect to
� the second-order equations obtained for the functions u�. We obtain

Here A� are the constants of integration, which are calculated from the known values of the functions u� in front of
the discontinuity, where the solution must reach constant u� = U� and du�/d� = 0.

For the medium considered with elastic potential �, specified by formula (1.1), we can write the next system using
the following notation introduced above in Section 4
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The constants of integration A1 and A2 are found from the values of u� and their derivatives in front of the discontinuity.
We obtain

(5.2)

The structure of the discontinuity, moving with a specified velocity W, exists if integral curves of the system of Eq.
(5.2), connecting the state before the discontinuity (U1, U2) with the state behind the front (u∗

1, u
∗
2), occur in the phase

plane (u1u2). In this case, the evolution of the solution must occur such that, when � (i.e. the time) increases, motion
along the integral curves occurs from the initial state before the front to the state behind it.

The states before and behind the discontinuity, where du�/d� = 0, for system (5.2) are stationary (singular) points.
In the (u1u2) plane these points lie at the intersection of the lines L(u1, u2) = 0 and M(u1, u2) = 0. One of the points
of intersections corresponds to the state before the discontinuity and the remaining ones correspond to possible states
behind the front of the jump. These points lie on the shock adiabatic (Fig. 1). The form of the curves L = 0 and M = 0,
the number of points of intersection and the position in the (u1u2) plane depend on the value of h, which serves as
a parameter, i.e. on the velocity of the jump W. A graph of the change in the value of h along the shock adiabatic is
shown in Fig. 2. It can be seen from this graph that, depending on the chosen value of h on the shock adiabatic, there
can be from one to three states behind the discontinuity. Hence, when investigating the whole regions of variation of h
from −∞ to +∞ it is convenient to separate the sections in accordance with the passage of W through Jouguet points.

The equation L(u1, u2) = 0 can be written in the form

These are hyperbolae with asymptotes passing through the point (−h, 0) at an angle of ± �/4 to the abscissa axis. The
location of the branches between the asymptotes depends on the value of h.

The equation M(u1, u2) = 0 also gives hyperbolae

with asymptotes passing through the point (h, 0) parallel to the coordinate axes.
For all stationary points, their types and the behaviour of the integral curves in the neighbourhood of each of these

singular points are determined, and the direction of the variation in the values of u1 and u2 along the integral curves
with time (as � increases) is indicated. For a structure to exist, the integral curve of Eq. (5.2), which would emerge from
the stationary point, representing the state in front of the jump and which would arrive at the other stationary point
as the time increases, must be found. Hence, it is clear that for this the initial singular point must possess an integral
curve emerging from it.

The field of the integral curves between singular points can be described qualitatively using isoclinics. It can be seen
from Eq. (5.2) that the integral curves intersect the lines L(u1, u2) = 0 on which du1/d� = 0, with the vertical tangent,
while they intersect the lines M(u1, u2) = 0 on which du2/d� = 0, with the horizontal tangent. In this case, at the points of
intersection, the integral curves have extrema, which enables us to determine the direction of variation of the quantity
u� along the integral curves as time increases. This procedure for constructing the field of the integral curves was
carried out for all values of the parameter h. When W < c−

1 in Fig. 3 (i.e. h < hA < 0 in Fig. 2), there are four points of
intersection of the curves L = 0 and M = 0. Of these the point A, corresponding to the state in front of the jump, is a node
with incoming directions, and hence in this case the structure cannot be constructed. The three other stationary points
correspond to states behind the discontinuity on the shock adiabatic, situated on the branch Dn, Ap and Lq (Figs. 1–3).
There are no shock transitions in these states of the structure.

When c−
1 < W < c+

1 in Fig. 3 (or when hA < h < hE in Fig. 2), the state before the front is represented by a
saddle-type singular point. One of the separatrices emerging from the point A goes to the other singular point B along
the branch AE of the shock adiabatic. The point B is a node with incoming directions. These evolution discontinuities
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Fig. 4.

also have a structure. The scheme of the arrangement of the stationary points, the isoclinics and the integral curves for
this case are shown in Fig. 4. The isoclinics are represented by the dashed curves and the integral curves are represented
by the continuous curves. The arrows indicate the directions in which the functions u� change with time. The integral
curve representing the structure is shown by the heavy curve. The two other stationary points B2 on the section DE of
the shock adiabatic and the point B3 on the section LH1 are of the saddle type. But, as can be seen from Fig. 4, the
separatrice cannot enter these points from the initial state. Hence, on these sections of the shock adiabatic there is no
shock-transition structure.

For c+
1 < W < c+

2 (the part on the branch LF of the shock adiabatic in Figs. 1 and 2b) and for c+
2 < W < c−

2 (the
sections AH and HK of the shock adiabatic and the section of the branch LF) the initial point is represented by a saddle,
and the other singular points are either a node with emerging trajectories (for the section AH), which eliminates the
possibility of constructing the structure, or these points are of the saddle type, into which the separatrices of the initial
point cannot enter. These shock transitions cannot have a structure.

For W > c−
2 the initial point A is a node with outgoing directions. The three stationary points, representing states

behind the jump, are saddles. One of the incoming separatrices for each of these three points arise from the initial point
A. The shock transitions in the state on the evolution branches Aq, Kn and Fp of the shock adiabatic (Fig. 1) all possess
a structure. The scheme of the arrangement of the integral curves for this case is shown in Fig. 5.

Hence, we have shown that all the evolution shock waves possess a stationary structure. At the same time, none of
the a priori non-evolution discontinuities have a structure.

Fig. 5.
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